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SUMMARY

We introduce and analyse a projection of the discontinuous Galerkin (DG) velocity approximations that
preserve the local mass conservation property. The projected velocities have the additional property of
continuous normal component. Both theoretical and numerical convergence rates are obtained which
show that the accuracy of the DG velocity �eld is maintained. Superconvergence properties of the DG
methods are shown. Finally, numerical simulations of complicated �ow and transport problem illustrate
the bene�ts of the projection. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The objective of this paper is to study the e�ects of the discontinuities in the �uxes of the
discontinuous Galerkin (DG) approximations of elliptic problems. Due to their �exibility, DG
methods have been popular among the �nite-element community and they have been applied
to a wide range of computational �uid problems. Since the �rst DG method introduced in
Reference [1] the methods have been developed for hyperbolic problems, see Reference [2]
for an overview, and for elliptic problems in References [3–8]. A uni�ed analysis for many
DG methods has been given recently in Reference [9].
Advantages of DG methods are their higher-order convergence property, local conservation

of mass and �exibility with respect to meshing and hp-adaptive re�nement. Their uniform
applicability to hyperbolic, elliptic and parabolic problems as well as their robustness with
respect to strongly discontinuous coe�cients renders them very attractive for porous medium
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�ow and transport calculations [10, 11]. One disadvantage is, however, that the normal com-
ponent of the velocity �eld is not continuous at inter-element boundaries. This leads to non-
physical oscillations if a DG �ow calculation is coupled to a DG transport calculation in a
straightforward way. Moreover, the sign of the normal �uxes may be di�erent from both sides
of an edge (or face in 3D) which makes it impossible to do particle tracking or to employ
the �ow �eld in connection with characteristic type methods.
In this paper, we present a simple and cheap post-processing technique for the DG velocity

�eld that results in continuous normal component at inter-element boundaries. In principle
any �nite-element space contained in H (div) can be used for this post-processing. We have
chosen the BDM �nite-element spaces introduced in Reference [12] because they nicely match
in dimension with the space of velocities generated by the DG method. It is shown that the
post-processed velocity �eld has the following properties:

1. The new velocity �eld identically reproduces the averaged normal �ux of the DG velocity
�eld. This is important because averaged normal �uxes in the DG method are locally
conservative.

2. The new velocity �eld has continuous normal component at inter-element boundaries.
3. It has the same accuracy and order of convergence as the original DG velocity �eld.

The normal �ux at inter-element boundaries plays an important role in the construction
of the projected velocity �eld. As a side e�ect we show numerically that those �uxes and
the jumps of pressure in the DG method are superconvergent by one order if the problem
possesses enough regularity.
The paper is organized as follows. In Section 2 we state the continuous problem, its DG

discretization and introduce the necessary notation. Section 3 describes the construction of
the locally conservative velocity projection scheme and the next section presents several error
estimates. Section 5 contains the numerical results and some conclusions are given in the last
section.

2. MODEL PROBLEM AND SCHEME

Let � be a polygonal domain in Rn; n=2; 3. Let the boundary of the domain @� be the union
of two disjoint sets 	D and 	N . For f∈L2(�); p0 ∈H 1=2(	D) and g∈L2(	N ), we consider the
following elliptic problem:

∇ · u=f in � (1)

u=−K∇p in � (2)

p=p0 on 	D (3)

u · n= g on 	N (4)

Here, K is symmetric positive de�nite matrix and n is the outward normal vector to @�.
In groundwater applications, problem (1)–(4) characterizes the single phase �ow in a porous

medium with p the �uid pressure, u the Darcy velocity and K the permeability �eld. It is
essential to develop numerical schemes that yield very accurate approximations of the velocity.
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The velocity obtained in (1)–(4) contributes to the advection of the solute transport problem
described below:

 
@S
@t
+∇ · (Su −D∇S)=R(S) in � (5)

(Su −D∇S) · n= Sinu · n on 	+ (6)

D∇S · n=0 on 	− (7)

where S is the saturation of the species advected,  the porosity of the porous medium, D the
molecular di�usion–dispersion coe�cient, R(S) a general reaction-source term and 	+ (resp.
	−) the in�ow (resp. out�ow) boundary.

	+ = {x∈ @�: u · n¿0}; 	−= @� \ 	+
Let Eh= {E}E be a non-degenerate quasi-uniform subdivision of �, where E is a triangle

or a quadrilateral if n=2, or a tetrahedron or hexahedron if n=3. Let h denote the maximum
diameter of the elements in Eh. The set of all interior and Dirichlet edges (or faces) is denoted
by 	h. With each edge (or face) e, we associate a unit normal vector ne. For a boundary edge
e, ne is taken to be the unit outward normal vector. For real m¿0 de�ne

Hm(Eh)= {w∈L2(�): w|E ∈Hm(E) ∀E ∈ Eh}
The usual Sobolev norm of Hm on E⊂Rn is denoted by ‖ · ‖m;E . The reader can refer to
References [13, 14] for the properties of Sobolev spaces. We de�ne the following broken
norms for positive integer m and for w∈Hm(Eh):

|||w|||m=
( ∑

E∈Eh

‖w‖2m;E

)1=2
:

We now de�ne the average and the jump for w ∈ Hm(Eh); m¿ 1
2 . We assume that ne is

exterior to E1e .

{w}= 1
2(w|E1e ) + 1

2(w|E2e ); [w]= (w|E1e )− (w|E2e ); ∀e= @E1e ∩ @E2e

{w}=w|E1e ; [w]=w|E1e ; ∀e= @E1e ∩ @�

The �nite-element subspaces consist of discontinuous piecewise polynomials:

Dk = {w: w|E ∈Pk(E) ∀E ∈ Eh}
where Pk(E) is a discrete space containing the set of polynomials of total degree less than or
equal to k on E. We now present the discontinuous Galerkin scheme for solving the elliptic
problem (1)–(4): �nd PDG ∈ Dk such that

∑
E

∫
E
K∇PDG · ∇w − ∑

e∈	h

∫
e
{K∇PDG · ne}[w] +

∑
e∈	h

∫
e
{K∇w · ne}[PDG]

=
∫
�
fw +

∑
e∈	D

∫
e
K∇w · nep0 −

∑
e∈	N

∫
e
gw; ∀w∈Dk (8)
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Let UDG denote the DG velocity obtained as follows:

UDG = −K∇PDG (9)

We easily see that the DG velocity satis�es the conservation of mass locally on each element
E with nE the outward normal to @E:∫

@E
{UDG · nE}=

∫
E
f; ∀E ∈ Eh

This property of the DG approximations is an appealing feature. However, the pointwise
discontinuity in the normal component of the DG velocity produces an additional numerical
error that can be signi�cant in applications where transport is coupled to non-uniform �ow. We
address this problem by de�ning an H (div) projection of the DG velocity, described below.

3. A LOCALLY CONSERVATIVE PROJECTION

In this section, we present a local projection on each element of the subdivision, from the
space of totally discontinuous velocities to the space of velocities that have continuous normal
components. The resulting velocity lies in the velocity subspace of the BDM spaces [12]
introduced by Brezzi et al. The construction of the projection is as follows: �x an element E
with edges ei; i=1; 2; 3 and let U∗ ∈ (Pk−1(E))2 be such that∫

ei
(U∗ · nei)z=

∫
ei
({UDG} · nei)z; ∀z ∈Pk−1(ei); i=1; 2; 3 (10)

∫
E
U∗ · ∇w=

∫
E
UDG · ∇w; ∀w∈Pk−2(E) (11)

∫
E
U∗ ·S(�)=

∫
E
UDGS(�); ∀�∈Mk(E) (12)

Here, S(�)= (@�=@x2;−@�=@x1) and the space Mk(E) is the �nite-dimensional space of poly-
nomials vanishing on the boundary of E.

Mk(E)= {�∈Pk(E): �|@E =0}
One interesting characteristic of our construction is that the H (div) projection de�ned in
Reference [12] is applied to the average of the DG �uxes.

Lemma 3.1
Conditions (10), (11) and (12) uniquely de�ne U∗.

Proof
See Reference [15].

We note that the new velocity U∗ has both advantages of a continuous normal component
and a local mass conservation: ∫

@E
U∗ · nE =

∫
E
f; ∀E ∈ Eh
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4. ERROR ESTIMATES

It is well known [7] that if the solution p of (1)–(4) belongs to Hs(Eh), for s¿2, then there
is a constant C independent of h and k such that

|||UDG − u|||06C
hmin(k+1; s)−1

ks−5=2 |||p|||s (13)

In this section, our main result shows that the convergence rate for the error in the projected
velocities is optimal with respect to the mesh size. We �rst recall a trace theorem [16], an
inverse estimate and the DG interpolant [7] needed for proving the estimates.

Lemma 4.1
Let E be an element of Eh.

‖∇� · ne‖20; e6C(h−1‖∇�‖20; E + h‖∇2�‖20; E); ∀e⊂ @E; ∀�∈H 2(E) (14)

‖∇� · ne‖20; e6Ck2h−1‖∇�‖20; E ; ∀e⊂ @E; ∀�∈Pk(E) (15)

Lemma 4.2
Let p∈Hs(Eh) with s¿2 be the solution of (1)–(4). Let k¿2. There is an interpolant PI ∈ Dk

of p such that

|||∇i(p− PI)|||06C
hmin(k+1; s)−i

ks−3=2−� |||p|||s; i=0; 1; 2 (16)

where �=0 if i=0; 1 and �=0:5 if i=2, and C is a constant independent of h and k.
Besides, we have

|||∇(PDG − PI)|||06C
hmin(k+1; s)−1

ks−5=2 |||p|||s (17)

We analyse the error in the normal components of the DG velocities.

Lemma 4.3
Let (p; u) be solution of (1)–(4) such that p∈Hs(Eh) for s¿2. Let UDG be de�ned by (9).
Then, we have for any element E of Eh

‖({UDG} − u) · ne‖0; e6C
hmin(k+1; s)−3=2

ks−7=2 |||p|||s; ∀e⊂ @E

Proof
Let UI = − K∇PI with PI de�ned in Lemma 4.2. Then, we have

‖{UDG} − u‖0; e6‖({UDG} − {UI}) · ne‖0; e + ‖({UI} − u) · ne‖0; e
By the inverse estimate (15) and the bound (17), we obtain

‖({UDG} − {UI}) · ne‖0; e6Ckh−1=2‖K∇(PDG − PI)‖S(e)

6C
hmin(k+1; s)−3=2

ks−7=2 |||p|||s
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Here, S(e) denotes the set of elements of Eh that share the edge e. By the trace theorem
(14) and the approximation result (16):

‖({UI} − u) · ne‖0; e6C(h−1=2‖∇(PI − p)‖0;S(e) + h1=2‖∇2(PI − p)‖0;S(e))

6C
hmin(k+1; s)−3=2

ks−2 |||p|||s:

The �nal result is obtained by combining the two bounds.

Remark
By construction of U∗, Lemma 4.3 immediately implies

‖(U∗ − u) · ne‖0; e6C
hmin(k+1; s)−3=2

ks−7=2 |||p|||s; ∀e⊂ @E

Lemma 4.4
Let p be the solution of (1)–(4) such that p ∈ Hs(Eh) for s¿2. Let (PDG;UDG) be de�ned
by (8) and (9). Then, we have for each element E ∈ Eh

‖[PDG]‖0; e + ‖[UDG] · ne‖0; e6C
hmin(k+1; s)−3=2

ks−7=2 |||p|||s; ∀e∈ @E

Proof
We note that

‖[PDG]‖0; e= ‖[PDG − p]‖0; e; ‖[UDG] · ne‖0; e= ‖[UDG − u] · ne‖0; e
and we apply similar techniques as in Lemma 4.3.

Theorem 4.5
There is a constant C independent of h such that for any element E of the subdivision Eh,

‖U∗ −UDG‖0; E6Chmin(k+1; s)−1|||p|||s
Proof
Let us �x an element E of Eh and let us denote by n(ei;E) the element of Eh that is a
neighbour of E via the edge ei ⊂ @E. Let us de�ne �=U∗ −UDG. Then, from (10)–(12), �
satis�es

∫
ei
(� · nei)z=−1

2

∫
ei
(UDG|E −UDG|n(ei ;E)) · nei z; ∀z ∈ Pk−1(ei); i=1; 2; 3

∫
E
� · ∇w=0; ∀w∈Pk−2(E)

∫
E
� ·S(�) = 0; ∀�∈Mk(E)
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By uniqueness of the construction (see Lemma 3.1), we can write

�= v1 + v2 + v3

where for i=1; 2; 3, vi satis�es

vi · nej =−�ij
1
2

∫
ei
(UDG|E −UDG|n(ej ;E)) · nej ; j=1; 2; 3

∫
E
vi · ∇w=0; ∀w∈Pk−2(E)

∫
E
vi ·S(�) = 0; ∀�∈Mk(E)

Fix i∈{1; 2; 3}. We now show that
‖∇vi‖0; E6Ch1=2‖vi · ni‖0; ei

Indeed, if we denote by B (and by Bt its transpose) the matrix of the a�ne mapping F that
maps the reference element Ê onto E in such a way that the edge ê3 is mapped onto the edge
ei and if we de�ne v̂= v ◦ F , we have (see for instance Reference [17])

‖∇vi‖0; E = |det B|1=2‖(B−1)t∇x̂v̂‖0; Ê
= |det B|1=2‖(B−1)tB∇x̂(B−1v̂)‖0; Ê
6 |det B|1=2‖B−1‖‖B‖‖∇x̂(B−1v̂)‖0; Ê

Passing to the reference element, one can show that v̂i belongs to the �nite-dimensional space
X̂ of functions v̂ ∈ Pk−1(Ê) such that

B−1v̂ · n̂êj =0; j=1; 2∫
Ê
B−1v̂ · ∇x̂ŵ=0; ∀ŵ ∈ Pk−2(Ê)

∫
Ê
B−1v̂∗ · ∇x̂ŵ=0; ∀ŵ∈Pk(Ê); ŵ|@Ê =0; v̂∗=(−v̂2; v̂1)

First, we show that the semi-norm ‖∇x̂(B−1v̂)‖0; Ê is a norm on X̂ . Clearly, if ‖∇x̂(B−1v̂)‖0; Ê =0,
then B−1v̂ is a constant vector and since it is orthogonal to two independent vectors n̂ê1 and
n̂ê2 , then it is zero. Therefore v̂=0. Second, we show that the semi-norm ‖B−1v̂ · n̂ê3‖0; ê3 is
also a norm on X̂ . We suppose that B−1v̂ · n̂ê3 = 0 on ê3 and passing back to the physical
element E, we have

v · nej =0; j=1; 2; 3∫
E
v · ∇w=0; ∀w∈Pk−2(E)
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∫
E
v ·S(�)=0; ∀�∈Mk(E)

which imply that v=0 (see Lemma 3.1). Since the norms on a �nite-dimensional space are
equivalent, we have

‖∇vi‖0; E6C|det B|1=2‖B−1‖‖B‖‖B−1v̂i · n̂ê3‖0; ê3
But

B−1v̂i · n̂ê3 = v̂i · (B−1)tn̂ê3 =
(vi · nei) ◦ F
‖(Btnei) ◦ F‖

Now

‖(vi · nei) ◦ F‖0; ê3 =
C

|ei|1=2 ‖v · nei‖0; ei ; ‖(Btnei) ◦ F‖¿ 1
‖B−1‖

thus combining all bounds, we obtain

‖∇vi‖0; E6Ch1=2‖vi · nei‖0; ei
To conclude we have

‖∇�‖0; E6Ch1=2
3∑

i=1

∣∣∣∣
∣∣∣∣12 [UDG]

∣∣∣∣
∣∣∣∣
0; ei

6Ch1=2‖[UDG]‖0; @E

and the �nal result is obtained from Lemma 4.4.

5. NUMERICAL EXPERIMENTS

5.1. Convergence studies

Smooth problem. In the �rst example we solve −
p=f, p=p0 on @�, in the unit square
�= (0; 1)2 where f and p0 are chosen such that the exact solution p(x; y)= e−((x−1=2)

2+(y−1=2)2)

is obtained. Table I lists the L2-norm of the error in the DG velocity, in the new projected
velocity and the di�erence of DG and projected velocity for k=2 and 3. The experiments are
run on quadrilateral and triangular meshes. As can be seen, all three di�erences converge with
the same optimal rate k predicted by our theoretical results. Table II shows that �uxes and
jumps of pressure at interior edges in the DG solution are superconvergent. The unstructured
mesh is generated by a triangular mesh generator with h≈ 1

4 . Finer meshes are obtained by
regular re�nement.
We note that the �uxes are superconvergent of order O(hk+1=2) instead of O(hk−1=2) as

expected and the jumps of pressure are superconvergent of order O(hk+3=2)
instead of O(hk+1=2). The latter is a very interesting result since it is known that numeri-
cally the error in the L2-norm for the DG pressure is not optimal for even-order polynomials.
The best theoretical result so far is a rate of O(hk−1=2). Here, superconvergence results are
obtained for both odd and even polynomials.
Reentrant corner problem: In order to illustrate the dependence of the convergence on the

regularity of the problem we solve −
p=0, p=p0 on @� in a domain with a reentrant
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Table I. Full regularity model problem.

h−1 ‖UDG − u‖0 Rate ‖U∗ − u‖0 Rate ‖UDG −U∗‖0 Rate

Equidistant triangular mesh, k =2
8 2:92 · 10−3 4:84 · 10−3 4:61 · 10−3
16 7:30 · 10−4 2.00 1:22 · 10−3 1.99 1:16 · 10−3 1.99
32 1:82 · 10−4 2.01 3:05 · 10−4 2.00 2:90 · 10−4 2.00
64 4:55 · 10−5 2.00 7:62 · 10−5 2.00 7:26 · 10−5 1.99
128 1:14 · 10−5 2.00 1:91 · 10−5 2.00 1:82 · 10−5 2.00
256 2:84 · 10−6 2.01 4:76 · 10−6 2.00 4:54 · 10−6 2.00

Equidistant quadrilateral mesh, k =2
8 5:52 · 10−3 5:53 · 10−3 2:01 · 10−3
16 1:41 · 10−3 1.97 1:37 · 10−3 2.01 4:07 · 10−4 2.30
32 3:54 · 10−4 1.99 3:43 · 10−4 2.00 9:47 · 10−5 2.10
64 8:85 · 10−5 2.00 8:55 · 10−5 2.00 2:32 · 10−5 2.03
128 2:21 · 10−5 2.00 2:14 · 10−5 2.00 5:76 · 10−6 2.00
256 5:53 · 10−6 2.00 5:34 · 10−6 2.00 1:44 · 10−6 2.00
512 1:38 · 10−6 2.00 1:33 · 10−6 2.01 3:60 · 10−7 2.00

Equidistant triangular mesh, k =3
8 1:04 · 10−4 1:48 · 10−4 1:52 · 10−4
16 1:29 · 10−5 3.01 1:85 · 10−5 3.00 1:92 · 10−5 2.98
32 1:60 · 10−6 3.01 2:31 · 10−6 3.00 2:41 · 10−6 2.99
64 2:00 · 10−7 3.00 2:88 · 10−7 3.00 3:02 · 10−7 3.00
128 2:50 · 10−8 3.00 3:60 · 10−8 3.00 3:78 · 10−8 3.00
256 3:12 · 10−9 3.00 4:50 · 10−9 3.00 4:73 · 10−9 3.00

corner, in this case 7=8th of a circle. Dirichlet boundary conditions are taken from the exact
solution p(r; �)= r4=7 sin( 47�) in polar co-ordinates. The solution is in Hs(�) with s=1+4=7.
The theoretical convergence rate is now s− 1=4=7≈ 0:5714 for the L2-norm of the error in
the velocities. This result is con�rmed in Table III and as expected, the convergence rate
is independent of the polynomial degree. The convergence rate of �uxes at interior edges is
s−3=2=1=14 and the convergence rate of pressure jumps at interior edges is s−1=2=1+1=14
as is fully con�rmed in Table IV.
We also observe that the quantity UDG −U∗ can be used as an error indicator: it is easily

obtained, computationally cheap and it does not require the knowledge of the exact solution.
In the case of non-smooth solution, the convergence rate of the L2-norm of UDG−U∗ is also
a good indicator of the regularity of the solution.

5.2. Flow: heterogeneous case

This example is taken from Reference [18] and illustrates the case of highly discontinuous
coe�cients. We solve (1)–(4) in the unit square with p=1 for x=0, p=0 for x=1 and
no �ow boundary conditions for y=0 and 1. The permeability �eld is de�ned on a 20× 20
mesh and is shown in Figure 1 on the left. In dark areas the permeability is K=10−6 · I,
elsewhere it is K= I.
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Table II. Full regularity model problem. Superconvergence of �uxes and jumps in pressure.

supe ‖({UDG} − u) · ne‖0; e supe ‖[PDG]‖0; e
h−1 k =2 Rate k =3 Rate k =2 Rate k =3 Rate

Equidistant triangular mesh
8 9:98 · 10−04 2:67 · 10−05 8:65 · 10−05 1:58 · 10−06
16 1:93 · 10−04 2.37 2:48 · 10−06 3.43 7:82 · 10−06 3.47 7:12 · 10−08 4.47
32 3:59 · 10−05 2.43 2:21 · 10−07 3.49 6:96 · 10−07 3.49 3:15 · 10−09 4.50
64 6:52 · 10−06 2.46 1:96 · 10−08 3.50 6:17 · 10−08 3.50 1:39 · 10−10 4.50
128 1:17 · 10−06 2.48 1:73 · 10−09 3.50 5:47 · 10−09 3.50 6:15 · 10−12 4.50
256 2:08 · 10−07 2.49 1:53 · 10−10 3.50 4:83 · 10−10 3.50 2:72 · 10−13 4.50

Unstructured triangular mesh
8 1:05 · 10−03 3:46 · 10−05 8:68 · 10−05 1:85 · 10−06
16 1:97 · 10−04 2.41 3:97 · 10−06 3.12 8:06 · 10−06 3.43 8:62 · 10−08 4.42
32 3:62 · 10−05 2.44 3:83 · 10−07 3.37 7:71 · 10−07 3.39 4:18 · 10−09 4.37
64 6:55 · 10−06 2.47 3:50 · 10−08 3.45 7:01 · 10−08 3.46 1:98 · 10−10 4.40
128 1:17 · 10−06 2.48 3:14 · 10−09 3.48 6:33 · 10−09 3.47 9:01 · 10−12 4.46
256 2:09 · 10−07 2.48 2:80 · 10−10 3.49 5:64 · 10−10 3.49 4:03 · 10−13 4.48

Table III. Reentrant corner problem. Convergence rates for DG and projected velocities.

h−1 ‖UDG − u‖0 Rate ‖U∗ − u‖0 Rate ‖UDG −U∗‖0 Rate

Triangular mesh, k =2
8 1:01 · 10−1 1:09 · 10−1 2:93 · 10−2
16 6:79 · 10−2 0.573 7:36 · 10−2 0.567 1:97 · 10−2 0.573
32 4:57 · 10−2 0.571 4:95 · 10−2 0.572 1:33 · 10−2 0.567
64 3:08 · 10−2 0.569 3:33 · 10−2 0.572 8:94 · 10−3 0.573
128 2:07 · 10−2 0.573 2:24 · 10−2 0.572 6:01 · 10−3 0.573
256 1:39 · 10−2 0.575 1:51 · 10−2 0.567 4:05 · 10−3 0.569

Triangular mesh, k =3
8 6:71 · 10−2 7:05 · 10−2 1:32 · 10−2
16 4:51 · 10−2 0.573 4:74 · 10−2 0.573 8:83 · 10−3 0.580
32 3:04 · 10−2 0.569 3:19 · 10−2 0.571 5:94 · 10−3 0.572
64 2:04 · 10−2 0.576 2:15 · 10−2 0.569 3:99 · 10−3 0.574
128 1:38 · 10−2 0.564 1:44 · 10−2 0.578 2:69 · 10−3 0.569

The unit square is discretized with 20×20×2 triangular elements such that the permeability
�eld is resolved with coarse grid elements. Finer grids are obtained through regular re�nement.
The right plot in Figure 1 shows the �ow �eld computed with degree k=3 on the coarsest
mesh.
Table V shows the convergence rates of the L2-norm of UDG − U∗ for k=2 and 3. The

rates suggest that the unknown exact solution belongs to Hs(Eh) with s≈ 1:7.
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Table IV. Reentrant corner problem. Convergence of �uxes and jumps in pressure at interior edges.

supe ‖({UDG} − u) · ne‖0; e supe ‖[PDG]‖0; e
h−1 k =2 Rate k =3 Rate k =2 Rate k =3 Rate

8 3:61 · 10−1 2:89 · 10−1 8:29 · 10−3 4:59 · 10−3
16 3:43 · 10−1 0.074 2:75 · 10−1 0.072 3:95 · 10−3 1.070 2:19 · 10−3 1.068
32 3:27 · 10−1 0.069 2:62 · 10−1 0.070 1:88 · 10−3 1.071 1:04 · 10−3 1.074
64 3:11 · 10−1 0.072 2:49 · 10−1 0.073 8:95 · 10−4 1.071 4:95 · 10−4 1.071
128 2:96 · 10−1 0.071 2:37 · 10−1 0.071 4:26 · 10−4 1.071 2:36 · 10−4 1.069
256 2:82 · 10−1 0.070 2:03 · 10−4 1.070

Figure 1. Permeability and �ow �eld for the discontinuous coe�cient example computed
with DG(3). Permeability 1 shown in light grey and 10−6 in black. Vectors not drawn

to scale are indicated by grey colour in the vector plot.

Table V. Heterogeneous �ow problem for triangular mesh.

k =2 k =3

h−1 ‖UDG −U∗‖0 Rate ‖UDG −U∗‖0 Rate

20 4:68 · 10−2 2:43 · 10−2
40 2:82 · 10−2 0.73 1:70 · 10−2 0.52
80 1:79 · 10−2 0.66 1:05 · 10−2 0.70
160 1:12 · 10−2 0.68 6:58 · 10−3 0.67
320 7:01 · 10−3 0.68
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5.3. Transport: heterogeneous case

This example illustrates the advantage of the projected velocity proposed in this paper in
connection with transport simulations using a DG space discretization. Equations (5)–(7) are
solved in the �ow �eld shown in Figure 2 generated by a set-up identical to that in the
previous section except that the permeability �eld has a single low permeability zone.
Parameters for Equation (5) are  =1; R(S)=0 and D=0 (pure convection). Boundary

conditions are S=1 at x=0, no �ow at y=0 and 1 and out�ow at x=1. Initial condition
is S=0 in �.
The problem is solved by a DG space discretization as developed in Reference [19] using

DG(1) elements and implicit Euler discretization in time. The �ow �eld is computed with
DG(2). The approximate solutions are shown at the �nal simulation time T =20. Since |u| ≈ 1
and the domain has a diameter of order 1 the solution is expected to be S=1 in the highly
permeable region and S=0 in the low permeably region. The plot on the left in Figure 3
shows the concentration obtained with a DG �ow and transport calculation. The solution
shows an overshoot of 33%. The right plot in Figure 3 shows the solution that is obtained
by replacing the DG velocity �eld with the projected velocity U∗. The solution does not
show any over-or undershoots. The reason for the oscillations obtained with the DG velocity
�eld is that the averaged normal �ux on element edges {UDG} · ne is not continuous. This is
visualized in Figure 4. The �gure shows the �ow �eld in two neighbouring triangles. Clearly,
the normal velocity is not the same on both sides of the 45◦ edge near the lower left corner
of the plot on the left which is obtained from the DG velocity. The right plot shows the
projected velocity �eld with continuous normal component.

Figure 2. Flow �eld used for the transport simulation.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 42:1043–1057



SUPERCONVERGENCE AND H (DIV) PROJECTION FOR DG 1055

Figure 3. Stationary solution of a transport calculation. DG �ow�eld left and projected
�ow �eld right. Medium grey means S =1:0, S¡0:9 is shown black and S¿1:1 is white.

Maximum overshoot in left plot is 1:33.

Figure 4. Comparison of DG (left) and projected (right) �ow �eld.

It should be noted that both solutions have been obtained without using slope limiters.
Clearly, a slope limiter is able to remove the oscillations obtained with the DG velocity since
the solution has the correct cell averages. However, a slope limiter should not be necessary
in the problem shown here.
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Table VI. Summary of convergence rates for pressure approximations of degree k.

Error Theoretical rate Numerical rate Superconvergence

‖UDG − u‖0 hk hk

‖U∗ − u‖0 hk hk

supe ‖{UDG} − u‖0; e hk−1=2 hk+1=2 √
supe ‖U∗ − u‖0; e hk−1=2 hk+1=2 √
supe ‖[PDG]‖0e hk−1=2 hk+3=2 √

6. CONCLUSION

In this paper, we have introduced and analysed a projection of the DG approximations that
preserve the local mass conservation property. The projected velocities have the additional
property of continuous normal component. Both theoretical and numerical convergence rates
have been obtained; they are summarized in Table VI for a regular solution. Superconvergence
properties of the DG methods are shown. Finally, the H (div) projection has been applied
to complicated �ow and transport problem and the resulting solution is shown to be more
accurate.
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